On a Conjecture of Atkin
نویسنده
چکیده
Let j be the modular invariant. For the primes p ≤ 23 the q-expansion coefficients of U(j− 744) are multiplicative as it was a Hecke eigenformmodulo a power of p which increases withm. This was conjectured by Atkin on the basis of extensive numerical experiments, and is proved in this paper. The cases p = 5, 7 and 11 are under special consideration in this paper.
منابع مشابه
On Atkin-Lehner correspondences on Siegel spaces
We introduce a higher dimensional Atkin-Lehner theory for Siegel-Parahoric congruence subgroups of $GSp(2g)$. Old Siegel forms are induced by geometric correspondences on Siegel moduli spaces which commute with almost all local Hecke algebras. We also introduce an algorithm to get equations for moduli spaces of Siegel-Parahoric level structures, once we have equations for prime l...
متن کاملGalois Groups via Atkin-lehner Twists
Using Serre’s proposed complement to Shih’s Theorem, we obtain PSL2(Fp) as a Galois group over Q for at least 614 new primes p. Assuming that rational elliptic curves with odd analytic rank have positive rank, we obtain Galois realizations for 3 8 of the primes that were not covered by previous results; it would also suffice to assume a certain (plausible, and perhaps tractable) conjecture conc...
متن کاملOn some generalisations of Brown's conjecture
Let $P$ be a complex polynomial of the form $P(z)=zdisplaystyleprod_{k=1}^{n-1}(z-z_{k})$,where $|z_k|ge 1,1le kle n-1$ then $ P^prime(z)ne 0$. If $|z|
متن کاملA note on Fouquet-Vanherpe’s question and Fulkerson conjecture
The excessive index of a bridgeless cubic graph $G$ is the least integer $k$, such that $G$ can be covered by $k$ perfect matchings. An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless cubic graph has excessive index at most five. Clearly, Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5, so Fouquet and Vanherpe as...
متن کامل$L^p$-Conjecture on Hypergroups
In this paper, we study $L^p$-conjecture on locally compact hypergroups and by some technical proofs we give some sufficient and necessary conditions for a weighted Lebesgue space $L^p(K,w)$ to be a convolution Banach algebra, where $1<p<infty$, $K$ is a locally compact hypergroup and $w$ is a weight function on $K$. Among the other things, we also show that if $K$ is a locally compact hyper...
متن کامل